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Question 1 [25 Marks]   

1.1 Define 

1.1.1 Aanalgebra A of a subset of X. (3) 

1.1.2 Martingale process. (4) 

1.1.3 A filtration {F;}. (4) 

1.2 Let = {w, W2 ,W3, wa}, give an example of a filtration on 2. (5) 

1.3 LetX, n= 0,1,2 ....be a stochastic Process in discrete time with a finite state space. State 

the conditions for X,, to be a Markov chain with stationary transition probability. (7) 

1.4 Define a probability space (, 5, p ). (2) 

Question 2 [25 Marks] 

2.1 Define an absorbing state of a Markov chain. (2) 

2.2 Find the long-term trend for the transition matrix given by —— . (12) 
fo 1 | 
3lo 0 1 

2.3 When does a stochastic process becomes a simple Random Walk? (3) 

2.4 Let {Yn }nen, be a simple random walk with parameter p. Prove that the distribution of the 

random variable 7, given by the generating function P,.(s) = 7.9 P,.S* of a poison function is 
A(s—1) e . (8) 

Question 3 [25 Marks] 

3.1 Define a discrete time Markov Chain with transition matrix p(i, j) . (5) 

3.2 Suppose that in the Gambler’s ruin chain, the transition probability has p(i,i + 1) = 0.4, 

p(i,i — 1) = 0.6, if 0 <i < N,p(0,0) = 1,p(N,N) =1andN =5. 

Find the transition matrix. (4) 

3.3 Let {¥n}new, be a simple random walk with parameter p. Prove that the distribution of the 

random variable 7, given by the generating function P,.(s) = 9 P,S* of a geometric 

function is —~-. (3) 
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(65 «28 .07 
3.4 A transition matrix p = 15 .67 . 3 shows the probability of a change in income class 

.12 .36 .52 
from one generation to the next, with p; ; representing the probability of changing from sate 

i to state j in general. Use p* , when k =2 or 3 to solve the following: 

3.4.1 Find the probability that a parent in state 1 (Lower class) will have a grandchild in state 3 

(Upper class). (6) 

3.4.2 Use matrix manipulation to show that a person in state 2 (middle class) will have a great 

grandchild in state 2 (middle class). (7) 

Question 4 [25 Marks] 

4.1 Define a regular Markov chain (2) 

4.2 Show that for larger values of n, and transition P, 

vP” = V where v is a vector (9) 

4.3 Find the long-range trend for the Markov Chain in the income class with a transition matrix 

Next Generation 

.65 .28 .07 
15 .67 .18]. (14) 
12 .36 .52 

END of EXAM


